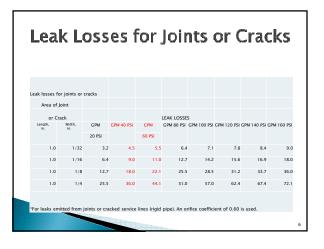


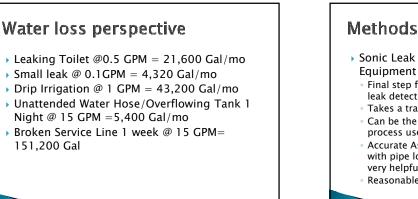
Benefits of Leak Detection and Repair

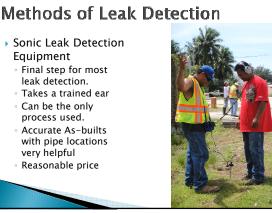
- Improved operational efficiency
- Lowered water system operational costs
- Increased revenue
- > Extended life of facilities
- Reduced water outage events
- Improved public relations
- Less Non-Revenue Water(NRW)
- > Reduced potential for contamination

Controlling Water Loss

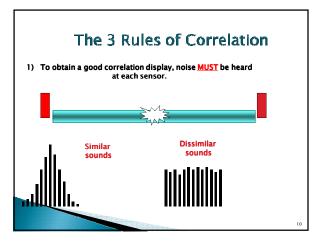
Real Losses

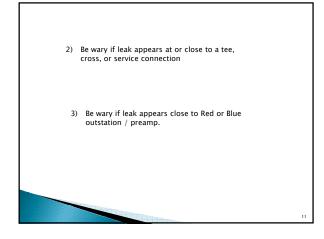

Physical escape of water from system including Leakage from water system, reservoirs, tanks and overflows. Real losses occur prior to the point of use.

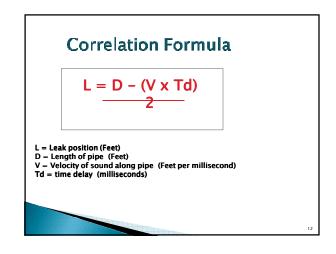

Apparent Losses

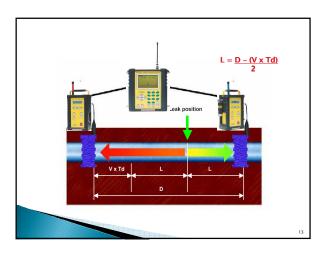

Caused by inaccuracies associated with customer metering, consumption and billing data handling error, assumptions and unmeasured use, and any form of unauthorized consumption (theft or illegal use).

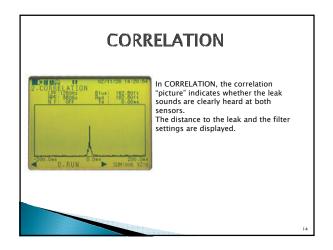
		Billed Authorized	Billed metered consumption	Revenue
	Authorized	Consumption	Billed unmetered consumption	Water
	Consumption	Unbilled Authorized	Unbilled metered consumption	
		Consumption	Unbilled unmetered consumption	
System			Unauthorized consumption	
input		Apparent	Customer metering inaccuracies	Non-
volume		Losses	and data handling errors	Revenue
(allow for	Water		Leakage on transmission and/	Water
known errors)	Losses		or distribution mains	(NRW)
		Real	Losses at utility's storage tanks	
		Losses	Leakage on service connections	
			up to point of customer use	

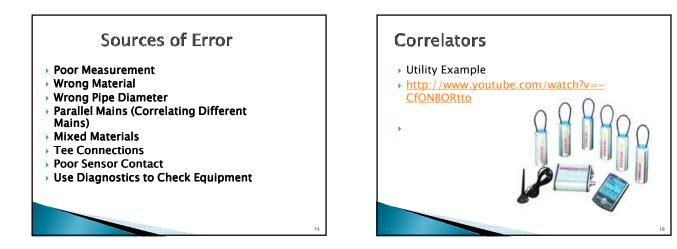

					~					
1 A 2	1	< Lo	766	29	tor	° Ci	rcu	lar	ho	les
		1 60			1.01	See 1		1441	110	n in Alex Isa
		ses for circu		nder differe						
Diamete hole, i		Area of Hole,	GPM	GPM 40 PSI	GPM	GPM 80 PSI	GPM 100 PSI	GPM 120 PSI	GPM 140 PSI	GPM 160 PSI
			20 PSI		60 PSI					
	0.1	0.007	1.067	1.51	1.85	2.136	2.388	2.616	2.825	3.021
	0.2		4.271	6.041	7.399	8.544	9.522	10.464	11.302	12.083
	0.3		9.611	13.593	16.648		21.493	23.544	25.430	27.186
	0.4	0.125	17.087	24.165	29.697		38.209	41.586	45.209	48.331
	0.5		26.699	37.758	46.245	53.399	59.702	65.400	70.640	75.518
	0.6		38.477	54.372	66.593	76.894	85.971	94.176	101.721	108.745
	0.7		52.331	74.007	90.64	104.662	117.01	128.184	138.454	148.014
	0.8	0.502	68.35	96.662	118.387	136.701	152.84	167.424	180.839	193.325
	0.9	0.636	86.506	122.338	149.833	173.012	193.434	211.896	228.874	244.676
	1.0		106.798	151.035	184.979	213.596	238.807	261.600	282.561	302.070
	1.1	0.950	129.225	129.225	182.752	223.825	258.451	316.536	341.898	365.505
	1.2	1.131	153.789	153.789	217.490	266.370	307.578	376.704	406.887	434.981
	1.3		180.488	180.488	255.249	312.615	360.977	442.104	477.527	510.498
	1.4	1.539	209.324	209.324	296.028	362.559	418.648	512.737	553.819	592.057
	1.5	1.767	240.295	240.295	339.829	416.203	480.590	588.601	635.762	679.658
	1.6	2.011	273.402	273.402	386.649	473.547	546.805	669.697	723.355	773.299
	1.7	2.270	308.646	308.646	436.491	534.590	617.292	756.025	816.600	872.983
	1.8	2.545	346.025	346.025	489.353	599.333	692.050	847.585	915.496	978.707
	1.9	2.836	385.540	385.540	545.237	667.776	771.081	944.378	1010.040	1080.470
	2.0	3.142	427.191	427.191	604.140	739.918	854.283	1046.400	1130.240	1208.280
*Calcul	atec	using Greek	ey's formu	la						

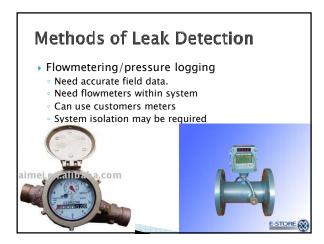


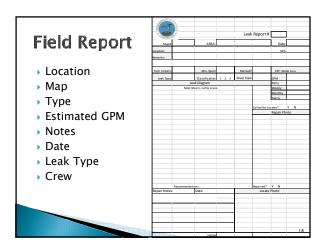



Acoustic Data Loggers/Correlators Calculates leak location in-between 2 points Graphically shows leak Still want to pin point with Acoustic leak detection equipment Takes multiple iterations finalize location Tairly expensive equipment








Leak Detection Methods, and Experiences from the Field

