Groundwater, nitrogen, and coastal ecosystems in Saipan Karen L. Knee, Kiho Kim, Naomi Geeraert Assistant Professor of Environmental Science American University, Washington, DC

Project goals

- Spatial survey of radon (a groundwater indicator)
- Estimate coastal residence time using radium isotope ratios
- Characterize discharging groundwater chemistry
- Estimate SGD and associated nutrient subsidies to the coastal ocean
- Assess variability in SGD between rainy and dry seasons
- Look at nitrogen sources with isotopes
- Investigate role of seagrasses in combatting ocean acidification and sewage pollution

How does SGD affect the coastal ocean? Kona Coast of Hawai`i: No rivers Another hydrological or streams, high SGD Nitrate concentration (uM) connection between land 100 and sea -5.9x + 210** 75 $r^2 = 0.90$ Freshwater Nutrients 25 - Metals Sewage pollution • Etc. . . More groundwater input From Knee et al. 2010

Measuring SGD with natural tracers

• Radium (Ra) and Radon (Rn)
• Incorporated into mass balance models
• Naturally enriched in most discharging groundwater
• Half lives 3 d – 1600 y
• Can be used as "natural clocks" to constrain coastal mixing rates

• From Knee et al. 2008

Calculating SGD with a box model

Groundwater inputs
Characteristics
- Consolidator radium
schrifty (Ra.,)
- Submaring ground
(Input (rine), Gillsube sceniment
flux, etc.)

Other inputs (rine),
- Residum activity (Rin.,)
- Residum activity (Rin

Dr. Karen Knee

Dr. Karen Knee 2

Dr. Karen Knee 3