CHEMICAL APPLICATIONS AND CHEMICAL FEED PUMPS

Gary Byrd, Training Specialist
Hawai'i Rural Water Association
-Nothing contained in this presentation is to be construed as granting any right, by implication or otherwise, for the
-Nothing contained in this presentation is to be construed as granting any right, by implication or otherwise, for the
manutacture, sale, or use of any method,
construed as insuring anyone against liability.
-The Hawai'i Rural Water Association makes no warranty or representation, either express or implied, with respect to the
accuracy, completeness, or utility of the information contained herein, of assumes any liabiity or responsibility for any use, or
the results of such use, of any information or process disclosed in this publication, or represent that its use would not inftinge

Chemical Applications

- Algae Control
- Clarification
- Water Softening
- Taste \& Odor Control
- Corrosion/Scaling Control
- Disinfection
- Fluoridation

Chemical Applications

- Clarification
- Coagulants
- Aluminum Sulfate (Alum) - $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 14 \mathrm{H}_{2} \mathrm{O}$
- Ferric Chloride $-\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
- Ferric Sulfate $-\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$
$-90-94 \%-\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
- Acidic

Staining

- Ferrous Sulfate - $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
- 55% - FeSO_{4}
- Cakes Dry

Need for Chemicals

A wide variety of chemicals are used in the water treatment system for the production of a safe and palatable drinking water supply.

Chemical Applications

- Water Softening
- Calcium Oxide - CaO
- Quicklime
- $75-99 \%$ - CaO
- Sodium Carbonate $-\mathrm{Na}_{2} \mathrm{CO}_{3}$
- Soda Ash
- $99.4 \%-\mathrm{Na}_{2} \mathrm{CO}_{3}$

Chemical Applications

- Taste \& Odor Control
- Activated Carbon - C
- Insoluble
- Potassium Permanganate $-\mathrm{KMnO}_{4}$
- 100\%
- Very Soluble

Chemical Applications

- Disinfection
- Sodium Hypochlorite - NaOCl
- $12-15 \%-\mathrm{Cl}_{2}$
- Solution/Bleach
- Generated On Site
- Calcium Hypochlorite - $\mathrm{Ca}(\mathrm{OCl})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
- $65-70 \%-\mathrm{Cl}_{2}$
- Powder/HTH
- Chlorine - Cl_{2}
- $99.8 \%-\mathrm{Cl}_{2}$
- Gas/Liquid
- Chlorine Dioxide $-\mathrm{ClO}_{2}$
- $26.3 \%-\mathrm{Cl}_{2}$
- Generated On Site

Chemical Feed Pumps

- Positive Displacement Pumps
- Diaphragm Pumps
- Piston Pumps
- Peristaltic Pumps
- Rotary Style Pumps
- Gas Regulator Equipment
- Volumetric
- Gravimetric

POSITIVE DISPLACEMENT PUMPS

- Precise volume at a precise time
- Usually a Diaphragm Pump
- Operated electrically or mechanically
- Foot valve and screen on suction, and 4-in-1 valve on discharge to prevent backsiphonage of chemical.

CHEMICAL FEED PUMP ARRANGEMENTS

Diaphragm Pumps

- Chemical Pumps
- Sludge Pumps
- Diaphragm pumping system
- Operated electrically or pnuematically
- Adjust the \% and speed of each stroke
- Foot valve and screen on suction
- 4-in-1 valve system to prevent backsiphonage of chemical.

Reciprocating/Piston Pumps

- Chemical Pumps
- "Mud Pump"
- Precise volume with each stroke
- Operated electrically or mechanically
- Adjust length and frequency of each stroke
- Foot valve and screen on suction
- 2 valve system to prevent backsiphonage of chemical.

Piston Pumps

Diaphragm/Reciprocating Pumps

Inlet Stroke
Exhaust Stroke
Figure 1 Operation of a liquid diaphragm pump.

Peristaltic Pumps

- Chemical feed applications
- Sampling machines
- Low maintenance
- Tubes ware out
- Change tubes according to manufacturers recommendations

Rotary Style Pumps

- Chemical Pumps
- Tight Clearances
- Rotary Lube
- Rotary Gear
- Adjustable Speeds
- Blowers
- Sludge Pumps

Rotary Lube Pumps

Chemical Feed Pump

 Accessories- Chemical Mixers
- Chemical Solution Tanks
- Foot Valves
- Injector/Ejector
- 4-in-1 Valves
- Calibration Equipment
- Flow Sensors
- Rebuild Kits

Chemical Solution Tanks

Foot Valve Unit with Strainer

Injector/Ejector

4-in-1 Valves

Chemical Pump Calibration

- Calibration Cylinders are installed on suction side of pump
- Fill cylinder to the top mark then close the valve from the chemical tank
- Switch on chemical feed pump and draw down the chemical in the cylinder for 30 seconds
- Switch the pump off
- The reading on the left side of the cylinder is in GPH

Calibration Cylinders

Flow Control Sensor

Gas Chemical Feed System
Rotameter - Rate of Gas Flow

Dry Chemical Feeder

Chemical Feed Rate Calculations Example 1

In a solution feed system, if the desired feed rate is 3 gph and the chemical feeder has a maximum feed rate of 15 gph, the feeder would be set at:

Scale Setting, \% = (Desired Feed Rate, gph)(100\%)
Maximum Feed Rate, gph
$=(3 \mathrm{gph})(100 \%)$
15 gph
$=20 \%$ of full setting

Chemical Feed Rate Calculations Problem 2

In a solution feed system, if the desired feed rate is 1.5 gph and the chemical feeder has a maximum feed rate of 10 gph , the feeder would be set at:

Scale Setting, \% = (Desired Feed Rate, gph)(100\%)
Maximum Feed Rate, gph
$=(1.5 \mathrm{gph})(100 \%)$
10 gph
= 15\% of full setting
68% chemical $=\underline{15 \%}$
0.68
$=22 \%$

Chemical Feed Pump Calibration Example 1

A chemical feeder draws a liquid from a one-liter ($1,000 \mathrm{~mL}$) graduated cylinder for 30 seconds. At the end of 30 seconds, the graduated cylinder has 400 mL remaining. What is the chemical feed rate in milliliters per minute and in gallons per minute (gpm)?

1. Determine volume of chemical fed in milliliters.

Chemical Fed, $\mathrm{mL}=$ Starting level, $\mathrm{mL}-$ Final level, mL

$$
\begin{aligned}
& =1,000 \mathrm{~mL}-400 \mathrm{~mL} \\
& =600 \mathrm{~mL}
\end{aligned}
$$

Chemical Feed Pump Calibration Example 1

A chemical feeder draws a liquid from a one-liter ($1,000 \mathrm{~mL}$) graduated cylinder for 30 seconds. At the end of 30 seconds, the graduated cylinder has 400 mL remaining. What is the chemical feed rate in milliliters per minute and in gallons per minute (gpm)?
2. Determine chemical feed rate, $\mathrm{mL} / \mathrm{min}$

Chemical Feed Rate, $\mathrm{mL} / \mathrm{min}=$ Chemical Fed, mL
Feed Time, min
$=\frac{(600 \mathrm{~mL})(60 \mathrm{sec} / \mathrm{min})}{30 \mathrm{sec}}$
30 sec
$=1,200 \mathrm{~mL} / \mathrm{min}$

Chemical Feed Pump Calibration Problem 1

A chemical feeder draws a liquid from a one-liter ($1,000 \mathrm{~mL}$) graduated cylinder for 15 seconds. At the end of 15 seconds, the graduated cylinder has 600 mL remaining. What is the chemical feed rate in milliliters per minute and in gallons per minute (gpm)?

1. Determine volume of chemical fed in milliliters.

Chemical Fed, $\mathrm{mL}=$ Starting level, $\mathrm{mL}-$ Final level, mL
$=1,000 \mathrm{~mL}-600 \mathrm{~mL}$
$=400 \mathrm{~mL}$

Chemical Feed Pump Calibration Example 1

A chemical feeder draws a liquid from a one-liter ($1,000 \mathrm{~mL}$) graduated cylinder for 30 seconds. At the end of 30 seconds, the graduated cylinder has 400 mL remaining. What is the chemical feed rate in milliliters per minute and in gallons per minute (gpm)?
3. Determine chemical feed rate, gpm

Chemical Feed Rate, gpm $=$ Chemical Fed, $\mathrm{mL} / \mathrm{min}$
$3,785 \mathrm{~mL} / \mathrm{gal}$
$=\frac{(1,200 \mathrm{~mL} / \mathrm{min})}{3,785 \mathrm{~mL} / \mathrm{gal}}$
$=0.32 \mathrm{gpm}$
65% chemical
$=\frac{0.32 \mathrm{gpm}}{0.65}$
0.65
$=0.49 \mathrm{gpm}$

Chemical Feed Pump Calibration Problem 1

A chemical feeder draws a liquid from a one-liter $(1,000 \mathrm{~mL})$ graduated cylinder for 15 seconds. At the end of 15 seconds, the graduated cylinder has 600 mL remaining. What is the chemical feed rate in milliliters per minute and in gallons per minute (gpm)?
2. Determine chemical feed rate, $\mathrm{mL} / \mathrm{min}$

Chemical Feed Rate, $\mathrm{mL} / \mathrm{min}=\underline{\text { Chemical Fed, } \mathrm{mL}}$
Feed Time, min
$=(400 \mathrm{~mL})(60 \mathrm{sec} / \mathrm{min})$
15 sec
$=1,600 \mathrm{~mL} / \mathrm{min}$

Chemical Feed Pump

 Calibration Problem 1A chemical feeder draws a liquid from a one-liter $(1,000 \mathrm{~mL})$ graduated cylinder for 15 seconds. At the
end of 15 seconds, the graduated cylinder has 600 mL remaining. What is the chemical feed rate in end of 15 seconds, the graduated cylinder has 600 mL remaining. What is the chemical feed rate in milliliters per minute and in gallons per minute (gpm)?
3. Determine chemical feed rate, gpm

Chemical Feed Rate, gpm $=$ Chemical Fed, $\mathrm{mL} / \mathrm{min}$
$3,785 \mathrm{~mL} / \mathrm{gal}$
$=(1,600 \mathrm{~mL} / \mathrm{min})$
$3,785 \mathrm{~mL} / \mathrm{gal}$
$=0.42 \mathrm{gpm}$
45% chemical
$=\underline{0.42 \mathrm{gpm}}$
0.45
$=0.94 \mathrm{gpm}$

Chemical Feed Pump Calibration Example 2

A chemical feeder draws a liquid from a one-liter ($1,000 \mathrm{~mL}$) graduated cylinder for 60 seconds. At the end of 60 seconds, the graduated cylinder has 250 mL remaining. What is the chemical feed rate in milliliters per minute and in gallons per minute (gpm)?

1. Determine volume of chemical fed in milliliters

Chemical Fed, $\mathrm{mL}=$ Starting level, $\mathrm{mL}-$ Final level, mL

$$
=1,000 \mathrm{~mL}-250 \mathrm{~mL}
$$

$=750 \mathrm{~mL}$

Chemical Feed Pump Calibration Problem 2

Chemical Feed Pump Calibration Problem 2

A chemical feeder draws a liquid from a one-liter ($1,000 \mathrm{~mL}$) graduated cylinder for 60 seconds. At the end of 60 seconds, the graduated cylinder has 250 mL remaining. What is the chemical feed rate in end of 0 seconds, the graduated cylinder has 250 mL
milliliters per minute and in gallons per minute (gpm)?
3. Determine chemical feed rate, gpm

Chemical Feed Rate, gpm $=$ Chemical Fed, $\mathrm{mL} / \mathrm{min}$
$3,785 \mathrm{~mL} / \mathrm{gal}$
$=\frac{(750 \mathrm{~mL} / \mathrm{min})}{3,785 \mathrm{~mL} / \mathrm{gal}}$
$=0.2 \mathrm{gpm}$
55% chemical
$=\frac{0.2 \mathrm{gpm}}{0.55}$
$=0.36 \mathrm{gpm}$

Gas Feed Rates Example 1

```
A well has a capacity of 2,800 gallons per minute (gpm) and operates }9\mathrm{ hours and }15\mathrm{ minutes. The
water has a chlorine demand of }1.5\textrm{mg}/\textrm{L}\mathrm{ . How many pounds per day would the rotameter have to
be set in order to have a 1.7 mg/L chlorine residual?
Flow, MG/Day }\quad=2,800\textrm{gpm}\times1440\textrm{min}/\textrm{Day
            1,000,000 ga/MG
    =4.032 MG/Day
Dose, ppm = Demand + Residual
    =1.5 ppm + 1.7 ppm
    =3.2 ppm
Lbs/Day
    = Flow, MG/Day X 8.34 Lbs/ppm-MG X dose, ppm
    =4.032 MG/Day X 8.34 Lbs/ppm.MG X 3.2 ppm
    = 108 Lbs/Day
```


Gas Feed Rates Problem 1

```
A well has a capacity of 1,500 gallons per minute (gpm) and operates }19\mathrm{ hours and }30\mathrm{ minutes. The
```



```
be set in order to have a 0.7 mg/L chlorine residual?
Flow, MG/Day = 1,500 gpm X 1440 min/Day
    1,000,000 ga//MG
    =2.16 MG/Day
Dose, ppm = Demand + Residual
    =3.5 ppm + 0.7 ppm
    =4.2 ppm
Lbs/Day = Flow, MG/Day X 8.34 Lbs/ppm.MG X dose, ppm
    =2.16 MG/Day X 8.34 Lbs/ppm.MG X 4.2 ppm
    = 76 Lbs/Day
```


Gas Feed Rates Example 2

```
    Your well is operating at 3.0 MGD and the chlorine rotameter is set on }65\mathrm{ pounds per
    day. What is the chlorine residual of the water if the chlorine demand is }1.8\textrm{mg}/\textrm{L}\mathrm{ ?
    Dose, ppm = Lbs/Day
        MG/Day X 8.34 Lbs/ppm.MG
        =65 Lbs/Day
        3.0 MGD X 8.34 Lbs/ppm·MG
        =2.6 ppm
        Residual, ppm = Dose, ppm - Demand, ppm
    = 2.6 ppm-1.8 ppm
    =0.8 ppm
day. What is the chlorine residual of the water if the chlorine demand is \(1.8 \mathrm{mg} / \mathrm{L}\) ?
Dose, ppm = Lbs/Day
MG/Day X 8.34 Lbs/ppm•MG
\(=65 \mathrm{Lbs} /\) Day
\(=2.6 \mathrm{ppm}\)
Residual, ppm
= Dose, ppm - Demand, ppm
\(=2.6 \mathrm{ppm}-1.8 \mathrm{ppm}\)
\(=0.8 \mathrm{ppm}\)
```

```
A well has a capacity of }50\mathrm{ gallons per minute (gpm) and operates }19\mathrm{ hours and }30\mathrm{ minutes. The
water has a chlorine demand of 1.3 mg/L. How many pounds per day would the rotameter have to
Flow, MG/Day }\quad=50\textrm{gpm}\times1440\textrm{min}/\textrm{Day
            1,000,000 ga//MG
    =0.072 MG/Day
Dose, ppm = Demand + Residual
    =1.3 ppm+0.2 ppm
    =1.5 ppm
Lbs/Day = Flow, MG/Day X 8.34 Lbs/ppm.MG X dose, ppm
    =0.072 MG/Day }\times8.34\textrm{Lbs}/\textrm{ppm}\cdot\textrm{MG}\times1.5\textrm{ppm
        =1 Lbs/Day
Flow, MG/Day \(\quad=50 \mathrm{gpm} \times 1440 \mathrm{~min} /\) Day
\(1,000,000 \mathrm{ga} / \mathrm{MG}\)
\(=0.072 \mathrm{MG} / \mathrm{Day}\)
Dose, ppm = Demand + Residual
\(=1.3 \mathrm{ppm}+0.2 \mathrm{ppm}\)
\(=1.5 \mathrm{ppm}\)
Lbs/Day
\(=\) Flow, MG/Day \(\times 8.34\) Lbs/ppm-MG \(\times\) dose, ppm
\(=0.072 \mathrm{MG} / \mathrm{Day} \times 8.34 \mathrm{Lbs} / \mathrm{ppm} \cdot \mathrm{MG} \times 1.5 \mathrm{ppm}\)
\(=1 \mathrm{Lbs} /\) Day
```


Gas Feed Rates Problem 2

Gas Feed Rates Problem 4

```
Your well is operating at 0.7 MGD and the chlorine rotameter is set on }4.5\mathrm{ pounds per
day. What is the chlorine residual of the water if the chlorine demand is 0.5 mg/L?
Dose, ppm =Lbs/Day
    MG/Day X 8.34 Lbs/ppm.MG
    =4.5 Lbs/Day
        0.7 MGD X 8.34 Lbs/ppm.MG
        =0.77 ppm
Residual, ppm = Dose, ppm - Demand, ppm
    =0.77 ppm - 0.5 ppm
    = 0.27 ppm
```


