




#### **Chemical Applications**

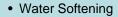
- Algae Control
- Clarification
- · Water Softening
- Taste & Odor Control
- Corrosion/Scaling Control
- Disinfection
- Fluoridation

#### **Chemical Applications**

- Algae Control
  - Copper Sulfate  $CuSO_4 \cdot 5 H_2O$ • 99% -  $CuSO_4$

#### **Chemical Applications**

• Clarification


#### Coagulants

- Aluminum Sulfate (Alum) Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> · 14 H<sub>2</sub>O
   47-50% Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>
  - 47-50% Al<sub>2</sub>(50)
     Acidic
- Ferric Chloride  $\text{FeCl}_3 \cdot 6 \text{ H}_2\text{O}$ 
  - 59-61% FeCl<sub>3</sub>
- Ferric Sulfate  $Fe_2(SO_4)_3 \cdot 9 H_2O$ 
  - 90-94% Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>
  - Acidic
    Staining
- Ferrous Sulfate FeSO<sub>4</sub> · 7 H<sub>2</sub>O
  - 55% FeSO<sub>4</sub>
  - Cakes Dry

#### **Chemical Applications**

- Coagulant Aids
  - Polymers
    - Cationic Polymers
       Positively Charged (+)
    - Anionic Polymers
       Negatively Charged (-)
    - Nonionic Polymers
       Neutral

## **Chemical Applications**



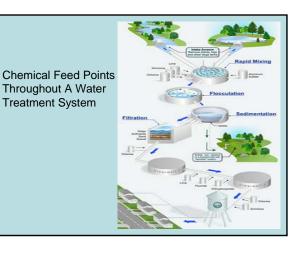
- Calcium Oxide CaO
  - Quicklime
  - 75-99% CaO
- Sodium Carbonate Na<sub>2</sub>CO<sub>3</sub>
  - Soda Ash
  - 99.4% Na<sub>2</sub>CO<sub>3</sub>

# Chemical Applications

- Taste & Odor Control
  - Activated Carbon C
    - Insoluble
  - Potassium Permanganate KMnO<sub>4</sub>
    - 100% Very Soluble

#### Chemical Applications • Corrosion/Scaling Control - Calcium Hydroxide – Ca(OH)<sub>2</sub> • Hydrated Lime • 75-99% - CaO • Basic

- Sodium Hydroxide NaOH
  - Caustic Soda
  - 98.9% NaOH
  - Very Basic

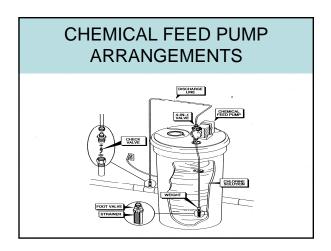

#### **Chemical Applications**

#### • Disinfection

- Sodium Hypochlorite NaOCI
  - 12-15% Cl<sub>2</sub>
  - Solution/Bleach
  - Generated On Site
- Calcium Hypochlorite Ca(OCl) $_2 \cdot 4 H_2O$ 
  - 65-70% Cl<sub>2</sub>
     Powder/HTH
- Chlorine Cl<sub>2</sub>
- 99.8% Cl<sub>2</sub>
- Gas/Liquid
- Chlorine Dioxide ClO<sub>2</sub>
  - 26.3% Cl<sub>2</sub>
    Generated On Site

#### Chemical Applications • Fluoridation - Sodium Silicofluoride – Na<sub>2</sub>SiF<sub>6</sub> • 59.8% - F • Powder - Sodium Fluoride – NaF • 43.6% - F • Powder or Crystal - Fluosilicic Acid – H<sub>2</sub>SiF<sub>6</sub> • 23.8% - F



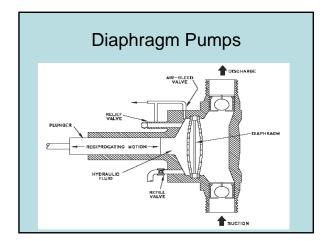


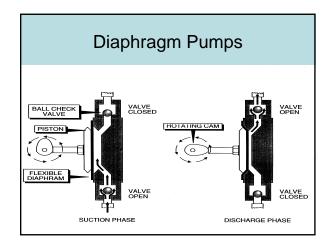

#### **Chemical Feed Pumps**

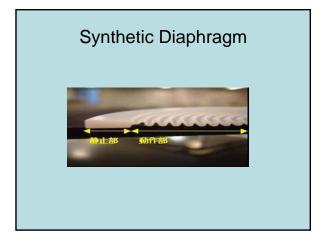
- Positive Displacement Pumps
  - Diaphragm Pumps
  - Piston Pumps
  - Peristaltic Pumps
  - Rotary Style Pumps
- Gas Regulator Equipment
- Volumetric
- Gravimetric

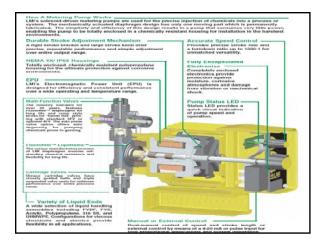
#### POSITIVE DISPLACEMENT PUMPS

- Precise volume at a precise time
- Usually a Diaphragm Pump
- Operated electrically or mechanically
- Foot valve and screen on suction, and 4in-1 valve on discharge to prevent backsiphonage of chemical.



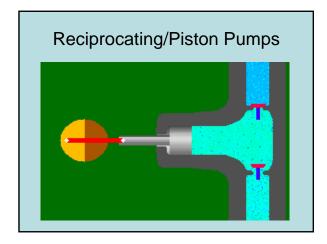



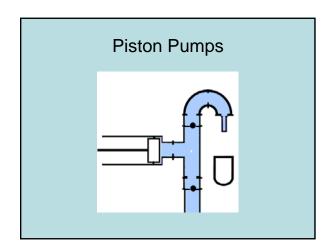


#### Diaphragm Pumps

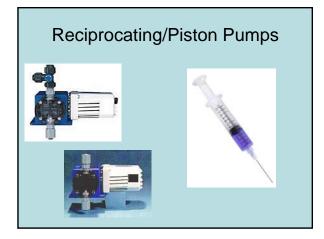
- Chemical Pumps
- Sludge Pumps
- Diaphragm pumping system
- Operated electrically or pnuematically
- Adjust the % and speed of each stroke
- · Foot valve and screen on suction
- 4-in-1 valve system to prevent backsiphonage of chemical.

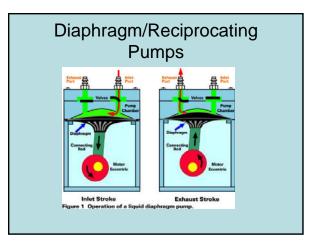






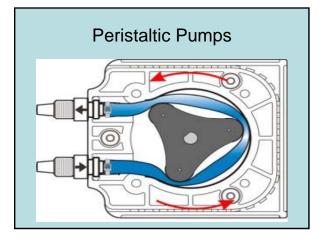



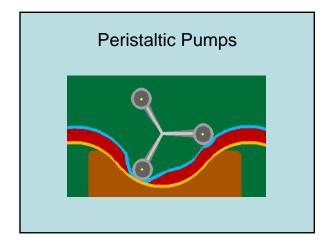





#### **Reciprocating/Piston Pumps**

- Chemical Pumps
- "Mud Pump"
- Precise volume with each stroke
- Operated electrically or mechanically
- Adjust length and frequency of each stroke
- Foot valve and screen on suction
- 2 valve system to prevent backsiphonage of chemical.



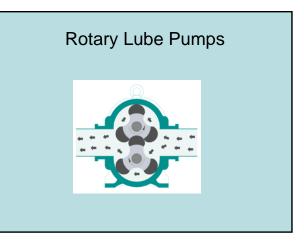


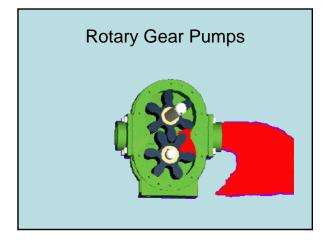






### Peristaltic Pumps

- Chemical feed applications
- Sampling machines
- Low maintenance
- Tubes ware out
- Change tubes according to manufacturers recommendations



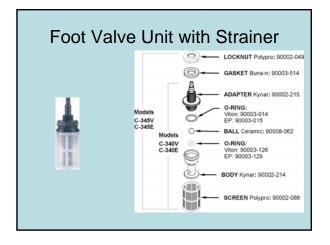





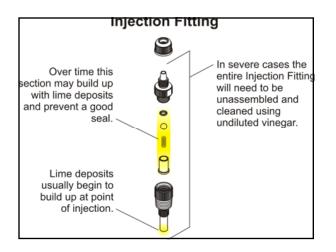

#### **Rotary Style Pumps**

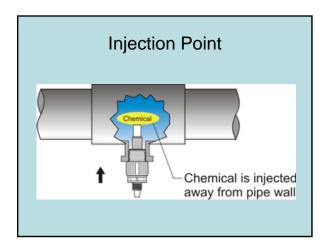
- Chemical Pumps
- Tight Clearances
- Rotary Lube
- Rotary Gear
- Adjustable Speeds
- Blowers
- Sludge Pumps

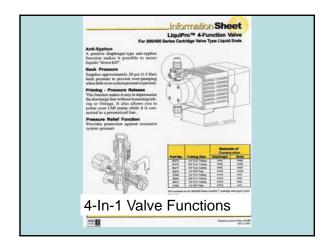


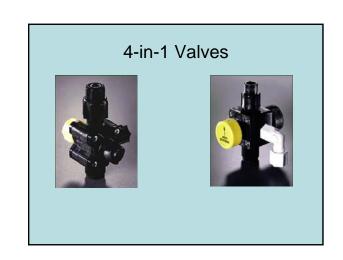



#### Chemical Feed Pump Accessories


- Chemical Mixers
- Chemical Solution Tanks
- Foot Valves
- Injector/Ejector
- 4-in-1 Valves
- Calibration Equipment
- Flow Sensors
- Rebuild Kits



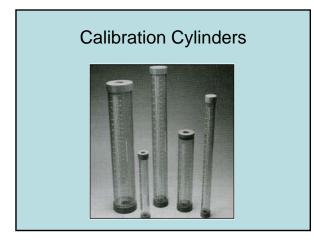



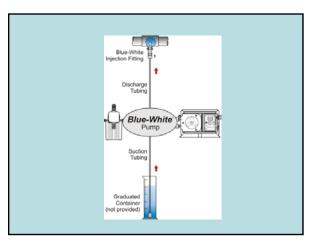



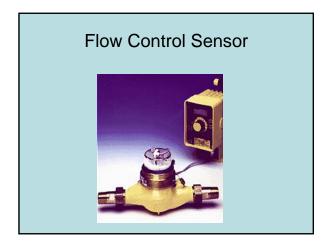


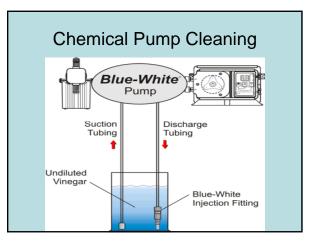


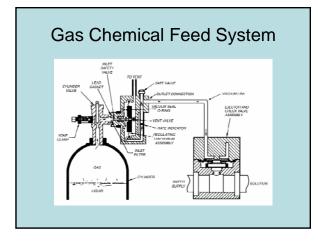


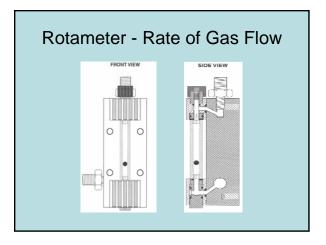



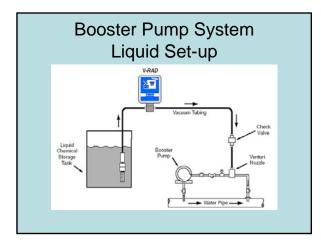



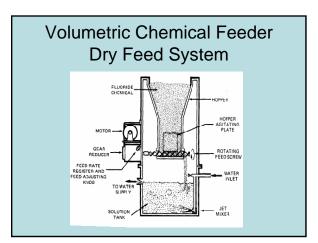



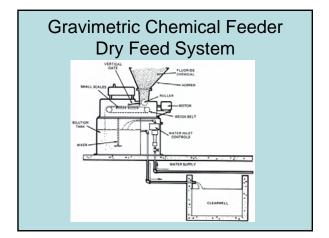


#### **Chemical Pump Calibration**

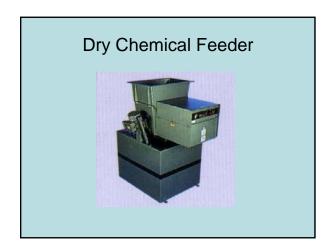

- Calibration Cylinders are installed on suction side of pump
  Fill cylinder to the top mark then close the valve from the chemical tank
  Switch on chemical tank
- Switch on chemical feed pump and draw down the chemical in the cylinder for 30 seconds
- Switch the pump off
- The reading on the left side of the cylinder is in GPH














#### Chemical Feed Rate Calculations Example 1 In a solution feed system, if the desired feed rate is 3 gph and the chemical feeder has a maximum feed rate of 15 gph, the feeder would be set at: Scale Setting, % = (Desired Feed Rate, gph)(100%)

Scale Setting, % = <u>(Desired Feed Rate, gph)(100%)</u> Maximum Feed Rate, gph

> = <u>(3 gph)(100%)</u> 15 gph

= 20% of full setting

#### Chemical Feed Rate Calculations Problem 1

In a solution feed system, if the desired feed rate is 15 gph and the chemical feeder has a maximum feed rate of 20 gph, the feeder would be set at:

Scale Setting, % = (Desired Feed Rate, gph)(100%) Maximum Feed Rate, gph

> = <u>(15 gph)(100%)</u> 20 gph

= 75% of full setting

### Chemical Feed Rate Calculations Problem 2

In a solution feed system, if the desired feed rate is 1.5 gph and the chemical feeder has a maximum feed rate of 10 gph, the feeder would be set at:



= <u>(1.5 gph)(100%)</u> 10 gph

= 15% of full setting

68% chemical = <u>15%</u> 0.68

= 22%

#### Chemical Feed Pump Calibration Example 1

A chemical feeder draws a liquid from a one-liter (1,000 mL) graduated cylinder for 30 seconds. At the end of 30 seconds, the graduated cylinder has 400 mL remaining. What is the chemical feed rate in milliliters per minute and in gallons per minute (gpm)?

1. Determine volume of chemical fed in milliliters.

Chemical Fed, mL = Starting level, mL - Final level, mL

= 1,000 mL - 400 mL

= 600 mL

#### Chemical Feed Pump Calibration Example 1

A chemical feeder draws a liquid from a one-liter (1,000 mL) graduated cylinder for 30 seconds. At the end of 30 seconds, the graduated cylinder has 400 mL remaining. What is the chemical feed rate in milliliters per minute and in gallons per minute (gpm)?

2. Determine chemical feed rate, mL/min

Chemical Feed Rate, mL/min = <u>Chemical Fed, mL</u> Feed Time, min

> = <u>(600 mL)(60 sec/min)</u> 30 sec

= 1,200 mL/min

# Chemical Feed Pump Calibration Example of the product of the prod

#### Chemical Feed Pump Calibration Problem 1

A chemical feeder draws a liquid from a one-liter (1,000 mL) graduated cylinder for 15 seconds. At the end of 15 seconds, the graduated cylinder has 600 mL remaining. What is the chemical feed rate in milliliters per minute and in gallons per minute (gpm)?

1. Determine volume of chemical fed in milliliters.

Chemical Fed, mL = Starting level, mL - Final level, mL

- = 1,000 mL 600 mL
- = 400 mL

## Chemical Feed Pump Calibration Problem 1

A chemical feeder draws a liquid from a one-liter (1,000 mL) graduated cylinder for 15 seconds. At the end of 15 seconds, the graduated cylinder has 600 mL remaining. What is the chemical feed rate in milliliters per minute and in gallons per minute (gpm)?

2. Determine chemical feed rate, mL/min

Chemical Feed Rate, mL/min = <u>Chemical Fed, mL</u> Feed Time, min

> = <u>(400 mL)(60 sec/min)</u> 15 sec

= 1,600 mL/min

#### Chemical Feed Pump Calibration Problem 1

A chemical feeder draws a liquid from a one-liter (1,000 mL) graduated cylinder for 15 seconds. At the end of 15 seconds, the graduated cylinder has 600 mL remaining. What is the chemical feed rate in millitiers per minute and in gallons per minute (gnm)?

3. Determine chemical feed rate, gpm

Chemical Feed Rate, gpm = <u>Chemical Fed, mL/min</u> 3,785 mL/gal

- = (1,600 mL/min) 3,785 mL/gal
- = 0.42 gpm

= <u>0.42 gpm</u> 0.45

45% chemical

= 0.94 gpm

#### Chemical Feed Pump Calibration Example 2

A chemical feeder draws a liquid from a one-liter (1,000 mL) graduated cylinder for 60 seconds. At the end of 60 seconds, the graduated cylinder has 250 mL remaining. What is the chemical feed rate in milliliters per minute and in gallons per minute (gpm)?

1. Determine volume of chemical fed in milliliters.

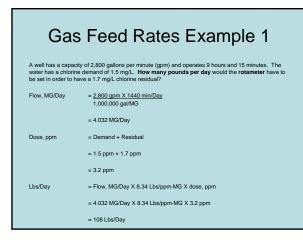
Chemical Fed, mL = Starting level, mL - Final level, mL

= 1,000 mL - 250 mL

= 750 mL

#### Chemical Feed Pump Calibration Problem 2

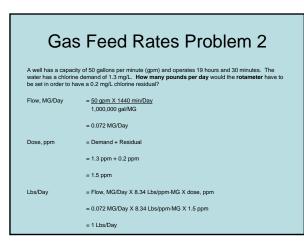
A chemical feeder draws a liquid from a one-liter (1,000 mL) graduated cylinder for 60 seconds. At the end of 60 seconds, the graduated cylinder has 250 mL remaining. What is the chemical feed rate in milliliters per minute and in gallons per minute (gpm)?

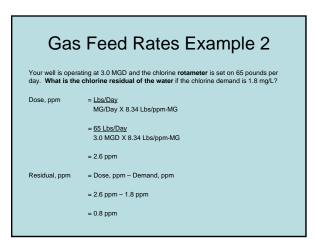

2. Determine chemical feed rate, mL/min

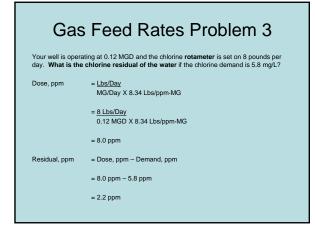
Chemical Feed Rate, mL/min = <u>Chemical Fed, mL</u> Feed Time, min

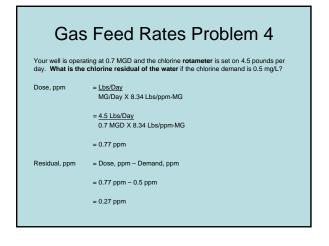
> = <u>(750 mL)</u> 60 sec

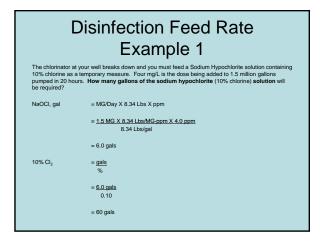
= 750 mL/min


| Chemical Feed Pump<br>Calibration Problem 2                                                                                                                                                                                                                            |                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| A chemical feeder draws a liquid from a one-liter (1,000 mL) graduated cylinder for 60 seconds. At the<br>end of 60 seconds, the graduated cylinder has 250 mL remaining. What is the chemical feed rate in<br>milliliters per minute and in gallons per minute (gpm)? |                                       |
| 3. Determine chemical feed rate, gpm                                                                                                                                                                                                                                   |                                       |
| Chemical Feed Rate, gpm = <u>Chemical Fed, mL/min</u><br>3,785 mL/gal                                                                                                                                                                                                  |                                       |
|                                                                                                                                                                                                                                                                        | = <u>(750 mL/min)</u><br>3,785 mL/gal |
|                                                                                                                                                                                                                                                                        | = 0.2 gpm                             |
| 55% chemical                                                                                                                                                                                                                                                           | = <u>0.2 gpm</u><br>0.55              |
|                                                                                                                                                                                                                                                                        | = 0.36 gpm                            |





# Gas Feed Rates Problem 1


A well has a capacity of 1,500 gallons per minute (gpm) and operates 19 hours and 30 minutes. The water has a chlorine demand of 3.5 mg/L. How many pounds per day would the rotameter have to be set in order to have a 0.7 mg/L chlorine residual?


| Flow, MG/Day | = <u>1.500 gpm X 1440 min/Day</u><br>1,000,000 gal/MG |
|--------------|-------------------------------------------------------|
|              | = 2.16 MG/Day                                         |
| Dose, ppm    | = Demand + Residual                                   |
|              | = 3.5 ppm + 0.7 ppm                                   |
|              | = 4.2 ppm                                             |
| Lbs/Day      | = Flow, MG/Day X 8.34 Lbs/ppm-MG X dose, ppm          |
|              | = 2.16 MG/Day X 8.34 Lbs/ppm-MG X 4.2 ppm             |
|              | = 76 Lbs/Day                                          |

