Continuing Education for Water Operators

Mariana Islands Water Operator Association

May 8, 2013
Pacific Islands Club, Saipan

Today's Agenda

- > About Continuing Education
- > Current Events
 - Hurricane Sandy Follow-Up
- > Main Events: Pipe for Water & Sewer
- > Main Events: Sewer videos
- > Association Business
 - Election of officer

Is THIS training required?

Why have continuing education?

- DEQ Regulations require certified operators to have 10 contact hours of continuing education per year (30 contact hours in 3 years) to maintain certification.
- DEQ is not required to offer training (and no longer offers training – no \$\$\$)
- > Where would operators get training?

Other training options

- Professional training provided by your employer (safety, pump maintenance, lab procedures, etc.)
- ➤ College classes
- Conferences or workshops by professional organizations or agencies
- > Correspondence courses
- > On-line opportunities

Instructor - Derek Chambers/Brian Bearden

NOT continuing education

- > Meetings with DEQ or EPA
- > Surveys or inspections by DEQ or EPA
- Reading journal articles or textbooks by yourself
- Googling water operator stuff on the internet

When should training be offered?

- > DEQ surveyed all certified operators
- > Results
 - One 3 hour session every 3 months
 - In morning
 - On a Wednesday
- > First session September 6, 2006

2006 – 2008 (DEQ)

- > September 6, 2006: Chlorination
- > November 8, 2006: Using a Pump Curve
- > February 7, 2007: Cross Connection
- > May 9, 2007: Regulations CCR, PNR
- > August 8, 2007: Sizing Pressure Tanks
- > November 26, 2007: PWS workshop
- > February 20, 2008: Fluoridation
- > May 2008: Process Controls (Robert Brokate)
- > August 2008: Slow Sand Filters
- > November 12, 2008: TCR and Control Valves

2009 MIWOA

- ➤ March 25, 2009: Security and Filters
- > May 13, 2009: Alt. Energy, CCR, Compliance
- > August 5, 2009: Geology of Saipan, GWR
- > October 9, 2009: GWR Workshop
- > December 2, 2009: Valves, Spills, Walkerton

2010 MIWOA

- > February 3, 2010: Safety, Haz Materials
- ➤ May 5, 2010: BEH & DEQ, Cross Connections
- August 11, 2010: Waste Water Collection/Treatment
- November 3, 2010: Response to disease outbreak

2011 MIWOA

- February 2011: Chemical Injection Pumps (HRWA)
- > May 2011: Radiation, Radionuclide Rule
- July 2011: Utility Policies & Procedures; Standard Operating Procedures (HRWA)
- > November 2011: Leak detection

2012 MIWOA

- February 2012: Bottled Water; Reverse Osmosis; Bottle Sanitation
- May 2, 2012: Inspecting Tanks, Water Meters
- August 8, 2012: Wastewater membrane filtration (Lau Lau Golf Hotel)
- November 2012: Metering and measuring flow

13

2013 MIWOA

- > February: Corrosion Control for Pb & Cu
- > May: Pipe for Water & Sewer
- > August: wastewater
- > November: ??
- Sometime in 2013 Backflow Assembly Tester Training (by Texas A&M Engineering Extension Service)

THIS TRAINING IS FOR YOU!

We'll do what we can to make it what YOU want it to be!

Mariana Islands
Water Operator Association

Suggestions for training

- Possible topics for upcoming sessions:
 - Backflow prevention device testing
 - Rainwater
 - Local Water System
 - How Reverse Osmosis Works
 - Energy efficiency
- Storm water and erosion control
- Introduction to waste water treatment
- Field trip
- Cleaning and handling bottles
- Leak detection

Announcements

- Certificates from the last 7 classes are posted on the website (May 2011 – November 2012)
- > New website design

www.MarianasOperators.org

CE Credit

- Make sure to sign-in and pay to get credit for class
- Certificates made from sign in list (and receipt book).
- ➤ Name as it appears on sign-in sheet
- Note e-mail address change on sign-in sheet

Rockaway WWTP

- > Serves more than 100,000 residential and business customers
- > Designed to produce disinfected secondary effluent

surge poured into plant's below-grade components

Flooding from Jamaica Bay

Complete shutdown of the 45 MGD plant

> High tide & storm

NYC - DEP responds

- > Department of Environmental Protection
 - Employees, on-site engineering, construction management consultants, and construction contractor personnel
- > Treating 99% of WW w/in 5 days
- > 100% of WW w/in 2 weeks.

31

Damage

- Flooded areas below 11-12 ft MSL (2-3 ft above existing grade), including:
 - Influent screening
 - · Main sewage pump station
 - · Primary sludge-pumping equipment
 - Waste-activated & return activated pumps
 - Sludge transfer pumps
 - Heating systems
 - Employee locker rooms, spare parts, records

22

Above Flood Level

- Standby generators
- Utility transformers
- Distribution switchgear
- Motor control centers
- Aeration blowers
- Operations & control
- 2nd story mech/chem storage
- Feed equipment

33

Response

- Needed external sourcing of materials + temp on site base for employees
- DEP established Incident Command Center (ICC)
 - Mobilized the team of engineers/construction managers/contractors.
 - · Assessing, prioritizing, & initialing repairs

...

Returning to Operations

- 1st priority: health and safety of workers on site
 - Air monitoring
 - Dewatering
 - Cleaning
 - Disinfecting
 - Power restoration
- Temporary lights installed to allow repairs to below grade infrastructure

05

Achieving Primary Treatment

- Temporary raw sewage pumps installed to dewater headworks
- > Restoring screening
- > Raw sewage pumping
- > Disinfection
- Primary sedimentation basins

Secondary Treatment

- Restoring and recovering aeration basins
- Secondary sedimentation basins
- Ancillary treatment components

37

Lessons Learned

- Assess all treatment-related systems that may be subject to flooding to determine the potential effect on operations if these systems were rendered inoperative
- Analyze the effect of failure of nontreatment related systems

Lessons learned cont...

- Evaluate the availability of external resources (repair services, temporary equipment, power, fuel)
- Consider how the facility could be run manaually – determine procedure and necessary staff

39

Lessons learned cont....

Following a catastrophic event, conduct a post recovery assessment of the sequence of events that led to the problem to determine what could have been prevented.

Lessons Learned cont...

- Consider civil of structural improvements (seawalls?)
- Civil/structureal too expensive consider other options (relocating some systems above flood grade)

WARN - AAR

- Water/Wastewater Agency Response Network – issued After-Action Report
 - Intrastate/Interstate mutual aid was successful
 - Giving priority to water/wastewater infrastructure needs improvement
 - "Loss of power was the single greatest factor affecting water sector operations"
 - Site access for utility workers not always recognized by law enforcement
 - Back-up communications systems needed

Hydraulic Model Improves Contamination Response With the Revised Total Coliform Rule set to go into effect in 2016, engineers in Philadelphia Water Department's water quality group decided it was a good time to see if the utility's repeat-sampling plan needed to be updated. BY DAVID SPECIT

Philadelphia Water Department

- > Distribution system
 - 225 MGD
 - 13 pressure districts
 - 3,100 miles of water mains
 - 87 grab sampling stations
 - 480 samples collected per month
 - 74 TCR monitoring locations

TCR Monitoring

- > 2003 through 2012
 - Average 5,800 samples tested
 - Average of 14 + for coliforms (0.24 %)
 - +'s came from different locations
 - Repeat sampling plan used about 14 times per year in response to + results

45

Repeat monitoring

- If there is a + coliform -> repeat w/in 24 hours of initial lab notification
 - 1 from same location
 - 1 from w/in 5 connections upstream
 - 1 from w/in 5 connections downstream
- > Continue to sample until all repeats are (-)

Current Repeat Plan

- > Current plan developed in early 1990s
 - Looked at maps
 - Guessed water flow direction around each sampling site
 - Went door-to-door to establish contacts in buildings (upstream/downstream)
 - Submitted plan to state agency
 - · Same plan still in use

47

Hydraulic Model/GIS

- > Revised TCR decided to update plan
- Wanted for confirm upstream/downstream locations
 - Had hydraulic model used to identify valves to close for leak detection investigations
 - GIS layer for buildings around grab sample locations
 - Site visits to confirm locations of service lines for buildings

Hydraulic Model

- Used average weekday operating conditions to identify flow directions in the mains around each TCR sample site.
- > "Visualization tools" drew in flow arrows
- > Categorized sites flow reversal?
 - Unidirectional
 - Flow reversal at night
 - Flow reversal during the day

New Plan

- Half of the existing upstream/downstream locations were not on the flowpath (as determined by the hydraulic model) though they were previously believed to be.
- The new repeat sampling plan will focus on identifying groups of buildings suitable for repeat sampling.

Pressure Zones Control of pressure zones: Automatic control valves (ACVs) Pressure-reducing valves (PRVs) Pressure-sustaining valves (PSVs) AWWA offers 10 considerations for proper valve selection

2. High & Low Flow Capabilities

- Understand the recommended flow range for any valve
- > Max ranges often shown minimum ranges sometimes not shown
- May need a smaller PRV on a bypass for low flow conditions

63

3. Added Features

- Ability to add electronic position indicators in future
- > Threaded body taps on both sides so the pilot system could be installed on either side.
- Pressure gauges installed two pipe diameters away for best measurement

5. Materials 316 stainless steel seat is twice as strong as 304 stainless (no brass or bronze) 18/9 stainless steel fasteners (not plated) Heat-fusion epoxy coating inside & outside Ductile iron body (not cast)

9. Upstream Line Strainer > Strainer upstream of valve to collect debris > Common to find wood, rocks, boots, or animals in a valve > Strainer should have a blow-down port to flush smaller debris without disassembling the entire strainer

